
July 2025 Suwa-Koubou

PIC32MZ HighSpeed USB HOST program

manual

I've always wanted to create my own host program to replace Harmony.

It seems there are others overseas who share the same thoughts. After searching the internet, I found several

sample programs for creating device programs. As for host programs, I was able to find a USB keyboard host

program created by aidanmoche.

The USB module built into the PIC32MZ is an excellent module that supports high speeds and is designed for

use with a hub. However, the only way to use it is to use the Harmony library provided by Microchip. However,

even moving a single mouse requires a large amount of source code.

Although the host hardware module is designed to use a hub, a separate hub driver must be created.

Fortunately, the hub driver for PIC32MX is available.

1. Introduction

I couldn't understand anything from the documentation for the USB module available from Microchip, and I had

given up on the idea of building one myself.

##

##

I downloaded it and tried it out straight away, and when I operated the keyboard, the characters I typed were

displayed on the screen, confirming that the USB host function was working correctly. Unfortunately, there were

some issues, such as it ceasing to work halfway through when I changed to a different keyboard, but what

impressed me was that it gave me a great hint for investigating in detail the function and setting methods of the

USB hardware module registers, something I had always wanted to know.

I'm grateful that you've made the source code public.

https://www.aidanmocke.com

https://www.aidanmocke.com/blog/2024/05/16/usb-host-hid-keyboard-code/ He devoted himself

to analyzing the Harmony source code and created the host program himself.

Machine Translated by Google

4

// One device, 4 interfaces

•Supported device types

In this way, we were able to create a USB host program with the following functions:

USB serial converter, USB memory (USB card reader)

Below is a brief explanation of the source code for the host program we created.

The source code consists of declarations followed by class drivers, core drivers, and hub drivers.

- The HUB supports up to four ports (can be changed to support six

ports). - Supports multiple interfaces and devices.

(This is done to avoid overly complex program design and to take into consideration the needs of the user.)

//#define DEBUG_DATA_PRINT Prints a hexadecimal representation of received data, including the DESCRIPTOR.

2. Main declarations and macros

- Hubs ranging from USB 1.1 to USB 3.0 are available.

(I am considering porting the UVC driver for PIC32MX that I created in the past)

* Things that are not realized in the current version

Ta.

For class drivers, see PIC32MZ HighSpeed USB HOST Application Interface

4

It's already been created, so it seems like it would be fine to use this.

Mouse, keyboard, game controller, HID generic, MIDI,

Please use this as a reference when deciphering or modifying the code.

// Supports up to 4 ports

DMA is not used for data transfer with the USB module's FIFO. (This is due to my

lack of knowledge. I would like to try it someday.)

(For a 4-port hub, the number of devices is limited to 5, including the hub.)

//#define DEBUG_DUMP_PRINT Prints the contents of DESCRIPTOR. It is

commented out, so please uncomment it if necessary.

//#define DEBUG_MSG_PRINT Outputs a debug message using printf().

(However, the maximum speed is limited to high speed.)

- A HUB connected to a HUB port cannot be used.

#define MAXINTERFACE

#define HUBMAXPORT

Please refer to the following explanation.

- Built-in HUB driver

- UVC devices such as web cameras are not supported.

Machine Translated by Google

} USB_DEVICE;

// this field used serial driver

uint8_t OUTEpProto;

// 2- MAXPORT+1 = HUB port connected device

To support a 6-port HUB, set HUBMAXPORT to 6. However, if you connect

up to 6 devices, the HOST side endpoints (described later) may be insufficient and the HUB may not function properly.

// 0=detached, 1=attached

uint8_t SubClass;

uint8_t interfaceNumber;

// number of devicesuint8_t nums;

uint8_t port[HUBMAXPORT];

uint8_t interfaceNumber[HUBMAXPORT]; // index of usbDevice[port].interface[]

uint16_t PId; //

1 = direct device or HUB,

// from Class to OUTinterval,

uint8_t OUTEpNum;

Manages information about connected USB devices. The contents of each variable are as described

in the comments. Information about unsupported interface classes and alternative interfaces is not recorded.

uint8_t INEpProto;

// vendor id copy from DEVICE DESCRIPTOR

struct interface_t {

// 0=not ready, 1= ready

There may not be.

uint8_t INEpNum;

} interface[MAXINTERFACE];

(Note)

// 3=low, 2=full, 1=high

// usbDevice[] index

uint8_t Protocol;

uint8_t OUTinterval;

// copy from CONFIGURATION_DESCRIPTOR

uint8_t Address;

uint16_t OUTEpSize;

uint8_t option[HUBMAXPORT];

uint8_t INinterval;

uint16_t VId; //

product id copy from DEVICE DESCRIPTOR

uint8_t Class;

typedef struct {

uint8_t HostEpNum; // assigned HOST side endpoint number

uint16_t INEpSize;

typedef struct usb_device_t {

uint8_t Speed;

uint8_t Attached;

uint8_t Ready;

uint8_t interfaceNums; // number of has interfaces

Machine Translated by Google

uint8_t SubClass;

int class;

uint16_t VId;

- Information about the device connected to the USB connector is stored in usbDevice[0].

The HUB itself is not counted. If nothing is connected to the HUB port, the count is 0.

- Information about devices connected to the HUB port is stored in usbDevice[port number].

uint16_t PId;

int subclass;

The list is generated using PRODUCT product_table[];

For each supported device, it contains a link to information about the USB device.

All variables are static and cannot be accessed from application programs.

usbDevice[HUBMAXPORT+1];

This is an array variable that manages information about connected USB devices.

typedef struct product_t {

typedef struct support_class_t {

// and msc driver

} PRODUCT;

- When a supported USB device is connected to a USB connector or a HUB port, the count

uint8_t Protocol;

Information about supported vendor class products. Converts

vendor class (0xFF) to its equivalent Class.

} DRIVER_INFO;

The code for the standard class that is supported.

Generate a code listing with STANDARD class_table[];

3. Main global variables

USB_DEVICE

uint8_t Class;

int protocol;

uint8_t cnctDeviceNums; This holds the

number of currently connected USB devices. The initial value is 0.

} STANDARD;

Machine Translated by Google

PRODUCT

This is an

array that is referenced when determining whether a connected USB device is a supported device.

uint8_t hubAttached;

STANDARD

This is used to determine whether a connected USB device is a supported device.

uint8_t usbDeviceAttach; •It becomes 1

when a hub or other USB device is connected to the USB connector. •It becomes 0 if nothing is

connected. •It becomes 0 when a connected

device is removed.

- Updated during the USB module interrupt process.

class_table[];

Stores the class code, subclass code, and protocol code of the supported standard classes.

I'll upload it.

- ID information for YAMAHA and ROLAND MIDI devices, FTDI USB serial conversion devices, etc. is stored.

product_table[]; An

array containing the vendor IDs and product IDs of supported vendor class devices.

- Countdown will start when the USB device is removed.

It is delivered.

void usb_host_init(void); Initializes

the USB host module. The application program

must call this function once before using USB.

- Work

variables are cleared, USB module registers are cleared, and USB interrupt processing is initialized.

I am.

•When a hub is connected to the USB connector, this value becomes 1. The initial value is 0.

DRIVER_INFO mouse_driver, keubpard_driver, ... msc_driver - Driver

information for supported classes. - Each contains a

link to the usbDevice[] variable.

4. Application Interface Functions

Machine Translated by Google

On the other hand, the isUsbConnect() function performs the following process each time it is called by an

application.

If the hubAttached flag is 1, the hub_loop() function is called.

It will be.

When the host is initialized by the usb_host_init() function, it starts monitoring the connection and removal

of USB devices to the USB connector, and if there is a change in the connector, a USB interrupt occurs.

During the interrupt process, if a connection is detected, the usbDeviceAttach flag is set to 1 and the detach is

If a device is detected, it will be enumerated.

When the hubAttached flag is 0, a device other than a HUB is connected, so you can continue

5. USB Device Management

5-1. USB Device Connection Processing

The process from when a USB device is connected to a connector until it can be used is as follows:

If not, the function will terminate and cnctDeviceNums will remain 1.

int isUsbConnect(void);

When the usbDeviceAttach flag is 1, if usbDevice[0].Ready is already 1,

When the usbDeviceAttach flag is 1 and usbDevice[0].Ready is 0, the device enumeration process

begins. If the enumeration process is successful, usbDevice[0].Ready becomes 1. If a hub connection is

confirmed during the enumeration process, the hubAttached flag becomes 1.

- Returns the value of cnctDeviceNums.

- This function is called periodically to connect or remove USB devices. The application program must

call this function from within the application loop.

The installation process is now complete, so next we will check the HUB connection.

First, read the DEVICE_DESCRIPTOR using the get_device_descriptor() function and set information

such as VId and PId in the usbDevice[port] variable.

If a removal is detected, it is set to 0.

5-2. USB device enumeration process

USB device enumeration is performed by calling the device_enumeration() function. The same function

is used for devices connected to USB connectors and devices connected to hub ports.

Machine Translated by Google

Even if the value is 1, the endpoint number 1 on the host side is already assigned to communication with another device.

For devices connected to a hub port, the port number is +1.

The hub_initialize() function is called to initialize the HUB.

Set usbDevice[port].Ready to 1 to end the enumeration process.

The class code is

is determined by referencing class_table[]. If the device is supported,

If a device other than a HUB is connected, a SET_ADDRES request is issued to the device.

Analyzes

all interfaces in the configuration.

The endpoint number to be assigned is the endpoint number on the device side.

Determines whether the device is portable.

Since the device is not connected, the enumeration process ends here. Since

usbDevice[port].Ready remains 0, the enumeration fails.

Store it in

5-3. Processing after enumeration

The hubAttached flag is set to 1 and usbDevice[0].Ready is also set to 1.

Reads endpoint information from an endpoint descriptor.

For the endpoint you have selected, specify the device information, such as the FIFO address and FIFO size of the USB module.

If the connected device is a HUB class device and the hubAttached flag is 0,

Next , a SET_CONFIG request is issued to activate the USB device .

If it is 0xFF (vendor class), refer to product_table[], otherwise

If the endpoint is already configured, it will be assigned the second endpoint.

The number does not necessarily match the IN endpoint number of the newly connected mouse device.

Set the address. The device address is 1 for the device connected to the USB connector,

Determine whether the device corresponds to the supported class based on the crypter class code.

Next, the host side endpoints that communicate with each endpoint for each interface of the device

in this case ,

Issue a GET_CONFIG request to obtain the configuration descriptor and interpret its contents.

After allocating the endpoint, call the set_port_device_endpoint() function to set the allocated

Store information such as interface number and endpoint number in the usbDevice[].interface[] variable.

If the hubAttached flag is already set to 1, cascading of HUBs is not supported.

If the enumeration process is successful, the analys_interface_class() function is called to

Machine Translated by Google

When a device connected to a USB connector is removed, the USB interrupt is

When a device connected to a HUB port is removed, the HUB itself remains connected to the USB

connector, so the usbDeviceAttach flag remains 1. In this case, the hub_loop() function is called, the

device removal is detected, and the removal process is carried out.

Once the above process is complete, the application can communicate with the device via API functions.

A CONFIGURATION DESCRIPTOR is obtained with a GET_CONFIG request to obtain interface

information and endpoint information.

A GET_HUB_DESCRIPTOR request is then issued to obtain information about the ports on the HUB.

This will tell you the number of ports on the HUB.

It will be possible.

The process of removing a device connected to a USB connector is performed by calling the usb_host_init() function.

If usbDevice[0].Ready is 0, the device is not connected or the removal process has completed.

Register it in the management variable of the class you want to use (such as mouse_driver or midi_driver).

First issue a SET_ADDRESS request to set the address, followed by a SET_CONFIG request.

Activate the HUB with est.

Finally, cnctDeviceNums is incremented by 1.

So I won't do anything.

This sets the registers required for communication with the endpoint on the client side.

When the isUsbConnect() function is called, the usbDeviceAttach flag is 0.

The usbDeviceAttach flag is set to 0.

To manage input/output by device class, the device interface information is

If usbDevice[0].Ready is 1, the device removal process will be performed.

cnctDeviceNums will count down by one.

6. HUB driver processing

6-1. HUB initialization

The hub_initialize() function performs the following processing:

5-4. USB device removal process

The device is removed and cnctDeviceNums is set to 0.

When you remove a device connected to a HUB port, only the information related to that device is displayed.

Machine Translated by Google

To receive this notice

The hub_loop() function first checks whether there has been a change in the status of the HUB

port. If there has been a change in the port, it calls the port_loop() function for the port that has changed.

Set the variables in usbDevice[0] appropriately.

PORT_DEVICE_DETACED ... Device removed

The connection speed of the device connected to the USB connector can be known from the USBOTG register.

PORT_DEVICE_NONE ... No change

The HUB notifies the IN endpoint when there is a change in the port status (connection or removal of a device).

I will.

6-2. HUB port handling

If you have a Multi Transaction Translator interface,

The changes are as follows:

PORT_DEVICE_ATTACHED ... Device attached

Issue a SET_INTERFACE request to use that interface.

The isUsbConnect() function calls the hub_loop() function if a HUB is connected.

Then issue a SET_PORT_FEATURE request to power on each port.

,

When

a low-speed device is connected, USBOTGbits.LSDEV is set to 1.

.

The HUB is a HighSpeed hub with class code (9), subclass code (0), and protocol code (2).

Finally, set the hubAttached flag to 1 to complete the initialization.

The results of each process are reported to the isUsbConnect() function through the following variables:

hubPortNumber: Notifies the port number that has changed

hubPortChanged: Notifies of changes

The host is notified using the set_port_device_endpoint()

function to start the receiving process.

The port_loop() function performs the necessary processing depending on the change in port state.

7. Detecting USB device connection speed

For example, if a connection is detected, reset the port.

Machine Translated by Google

*data).

When a packet is received, a USB interrupt occurs and the call_back_EPN_read() function is executed from the interrupt handler.

If both bits are 0, a full speed device is connected.

To determine whether the device is a full-speed or high-speed device, perform the following after a bus reset:

For USB communications with a packet size of 64 bytes or less, data reception is automatic.

USB_EPN_RX_IE |= (1<<hep);

IEC4bits.USBIE = 0;

resetRxQueue(hep);

When a device is connected to the port, if PORT_LOW_SPEED_BIT is 1, it is a low-speed device.

The code is as follows, where hep is the host endpoint number.

*((int32_t *)&USBE1CSR1 + (hep-1) * 4) |= 0x200000;

Reads data from the buffer.

On the other hand, for devices connected to a HUB port, the port status indicating the status of the HUB port is displayed.

*((int32_t *)&USBE0CSR0 + hep * 4) &= ~(0x20000000);

Received packets are stored in a ring buffer.

You can tell by looking at the HSMODE bit in USBCSR0. If USBCSR0.HSMODE is 1, it is high speed.

IEC4bits.USBIE = 1;

Control transfer is usb_ctrl(uint8_t port, uint8_t addr, uint8_t * ctrl, uint8_t

When a standard or high-speed device is connected, USBOTGbits.LSDEV is 0.

8. Automatic reception by interrupt

// HOST endpoint enable RX interrupt

is called and the packets are stored in the ring buffer.

// USBIENCSR1bits.REQPKT = 1; IN transaction start

If PORT_HIGH_SPEED_BIT is 1, it is a high-speed device connection.

// start receive auto request

// USBIENCSR0bits.MODE = 0; Set RX mode

This can be determined by the change in the status bit.

Automatic reception is initiated within the set_port_device_endpoint() function.

9. Control Transfer

// clear ring buffer

Device connection.

Received data read from the application (such as calling the usb_mouse_read() function) is

Machine Translated by Google

Turn on the STATUS and TXPKTRDY bits in the USBE0CSR0 register.

10. Bulk Interrupt Transfer

In the STATUS stage, if the DATA stage was an IN transaction, the received response

The source code is as follows:

An IN transaction is performed by calling the usb_read() function. The

endpoint numbers on the host side that communicate with the usb_read() function are 1 to 7.

*((uint8_t *)&USBE0CSR0 + 0x2) = 0x60; // Set STATUS and REQPKT, no data stage. When an

empty data packet is received, clear the STATUS and RXPKTRDY bits. *((uint8_t *)&USBE0CSR0

+ 0x2) &= ~0x41; // Clear STATUS and RXPKTRDY

In the SETUP stage, the usb_setup() function is called to send a SETUP packet on EP0.

In the DATA stage, depending on the contents of the request packet, if data is to be received,

usb_ep0_read() is called to execute an IN transaction, and if data is to be sent, usb_ep0_write() is called

to execute an OUT transaction. If there is no data to send or receive, there is no DATA stage.

There is no process to read data from the RXFIFO.

port is the port number of the HUB to which the device is connected. addr is the address set for the

device. ctrl is the request packet such as GET_DESCRIPTOR. data is the data to be sent or the receive

buffer according to the request.

If the DATA stage is an OUT transaction, or if there is no DATA stage, null data is received from the

device in response to the DATA packet or SETUP packet. The source code is as follows:

*((uint8_t *)&USBE0CSR0 + 0x2) = 0x42; // STATUS + TXPKTRDY

A control transfer consists of three stages: SETUP stage, DATA stage, and STATUS stage. Control

transfers are performed on endpoint 0 for all devices.

Turn on the STATUS and REQPKT bits in the USBE0CSR0 register

No data is set in the TXFIFO.

By turning on USBIENCSR1bits.REQPKT, an IN token is sent and data is received from the device.

When this is received, a receive interrupt occurs.

Machine Translated by Google

If the amount of data to be sent is larger than the packet size, it will be divided into packets of the same size and

sent.

If the TXPKTRDY bit is cleared within a certain period of time, the transmission is successful.

The speed and address of the communication destination device for IN and OUT transactions are set by

the set_port_device_endpoint() function call executed at the end of the enumeration process, so there is no

need to set them in usb_read() or usb_write().

Supports UVC devices such as webcams and audio streams.

An OUT transaction is performed by calling the usb_write() function. The

endpoint numbers on the host side that communicate with the usb_write() function are 1 to 7. After

storing the data to be transmitted in the FIFO, turning on the USBIENCSR0bits.TXPKTRDY bit starts the transmission.

11. Isochronous Transfer

The reception process is then completed.

After the received data is removed from the FIFO, the USBIENCSRD1bits.RXPKTRDY bit is cleared.

If supported, isochronous transfers are required.

Coding the transfer process for isochronous transfers is almost the same as for bulk and interrupt transfers,

but care must be taken with packet size. With isochronous transfers, the transfer packet size changes

dynamically as the alternative interface is switched. The current set_port_device_endpoint() function does not

support dynamic changes in packet size. Also, the usbDevice[] variable does not currently store any information

about alternative interfaces. Some modifications are required to add isochronous transfer processing.

End

Isochronous transfers are not required for the USB devices currently supported.

Machine Translated by Google

